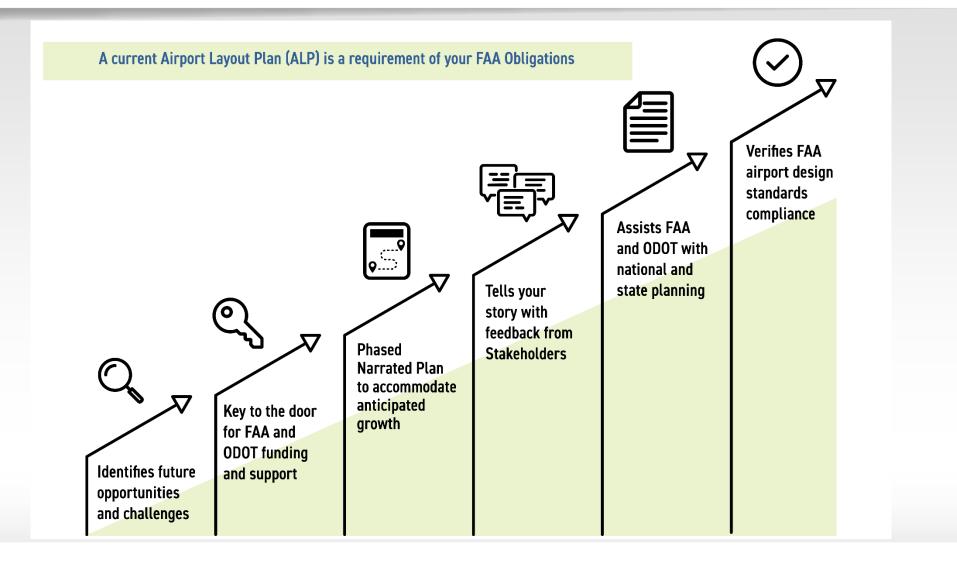
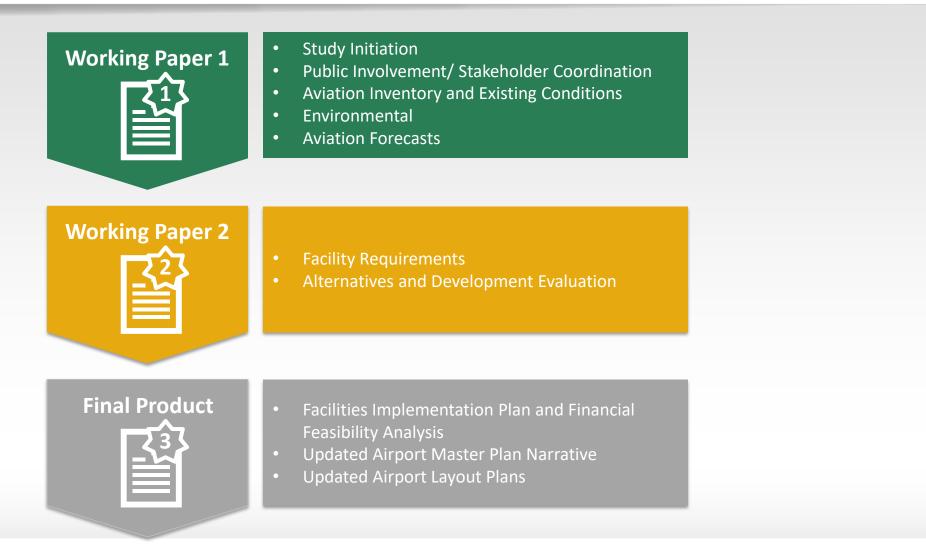
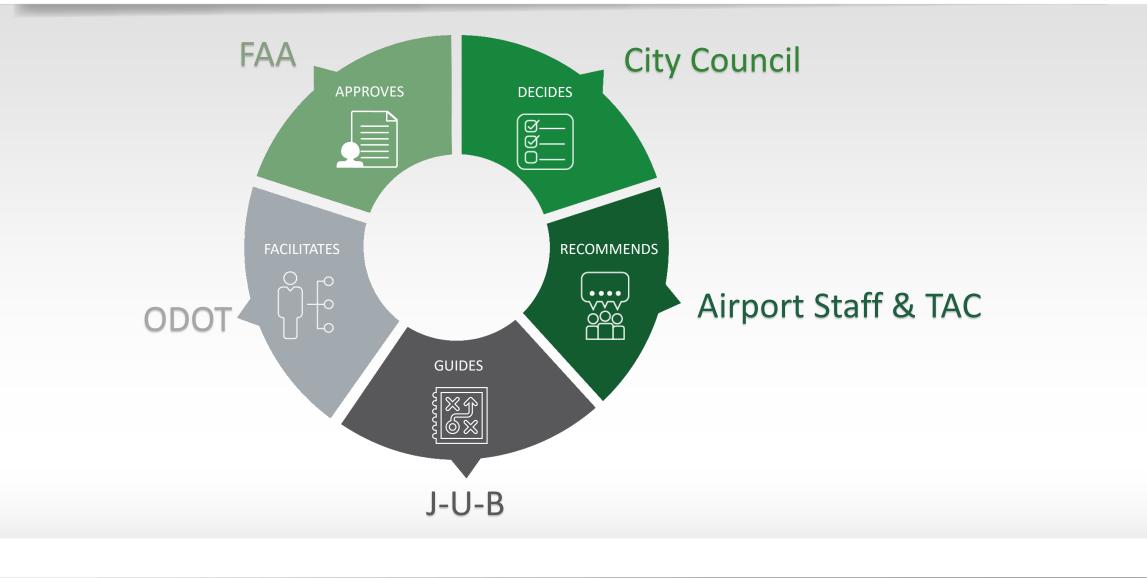


Ontario, Oregon Airport (ONO)


Airport Master Plan Update Technical Advisory Committee Meeting #2 March 29, 2022


AGENDA


WHY DO AIRPORT PLANNING?

WHAT DO WE GET FROM THIS PROCESS?

WHO DOES WHAT?

ROLE OF THE TECHNICAL ADVISORY COMMITTEE (TAC)

What is it?

- Advisory board to the City Council
- Liaisons between the community and Airport

What do members do?

- Exchanges different ideas and perspectives
- Takes community benefits into consideration
- Works together to provide recommendations that meets the needs and interests of all parties

TAC MEMBERS

Justin Zysk Adam Brown John Kirby **Dan Cummings** John Freeburg **Gary Taylor** Shawn Coleman **Shay Myers** Luke Keller **David Bryant Brian Rindlisbacher BLM** Jessica Sherwood Michael Spelman **Catherine Weber** Shawna Peterson

Airport Manager City Manager City Council Economic Development Director Committee **Committee President Committee Vice Chair Committee** Committee **TVCC** BLM BLM FBO **Eastern Oregon Border Board**

PROJECT SCHEDULE

ONO	Completed	03/2022	04/2022	05/2022	06/2022	07/2022	08/2022	09/2022	10/2022	11/2022	12/2022
Project Creation	\star										
Chapter 1 Introduction											
Chapter 2 Inventory											
Chapter 3 Forecasts											
Chapter 4 Facility Requirements											
Chapter 5 Alternatives											
Chapter 6 Phased Development											
Chapter 7 ALP Drawings											*
FAA Reviews											
Consultations/Public Involvement	.	4			4					4	
Deliverables											

PLAN FOR KEY ISSUES

PROJECT WEBSITE

Welcome to the Ontario, Oregon Airport Master Plan Update.

Over the coming months the Airport will evaluate the overall facilities and surrounding environment of the airport and seek input for future plans. The project is particularly focused on the land located west of the runway where the golf course used to be. The City and the Airport want to use the available space to provide benefit to the community and additional revenues for the Airport. Your input is appreciated. Information about he project, the process, and the documents created will be updated on this page as the City moves through the Master Planning effort.

Master Plan Documents	Planning Links
Chapter 1 - Introduction	Master Plan Future Use Survey
Chapter 2 - Inventory	TAC Meeting 1
Chapter 3 - Forecast	TAC Meeting 1 Notes
Chapter 4 - Facilities Requirements	TAC Meeting 2
Chapter 5 - Alternatives	Public Meeting
Chapter 6 - Project Implementation	TAC Meeting 3
Chapter 7 - ALP	

Contact Information

If you have comments, ideas, or questions concerning the future of the Ontario Airport, please contact the project representative or the airport managaer

Justin Zysk - Airport Manager Call: 541-709-7651 Email: Click Here

https://onomasterplan.jub.com/

CITY AND STAKEHOLDER OVERVIEW

- Solicited information via
 - In-person conversations

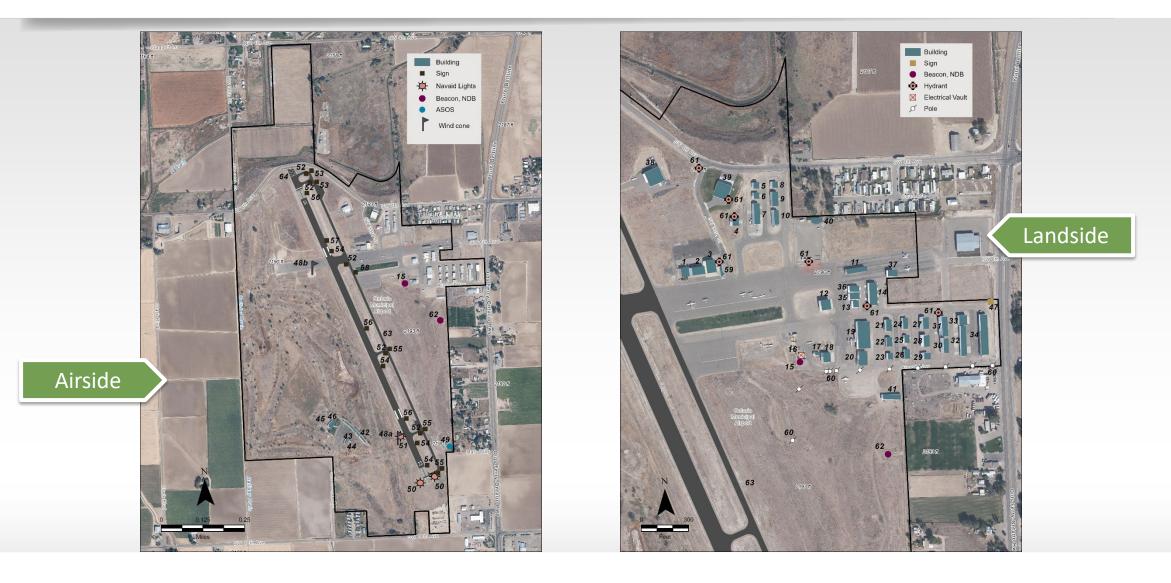
 $\odot =$

- Survey
- Social Media

STAKEHOLDER ASSESSMENT

Main Themes

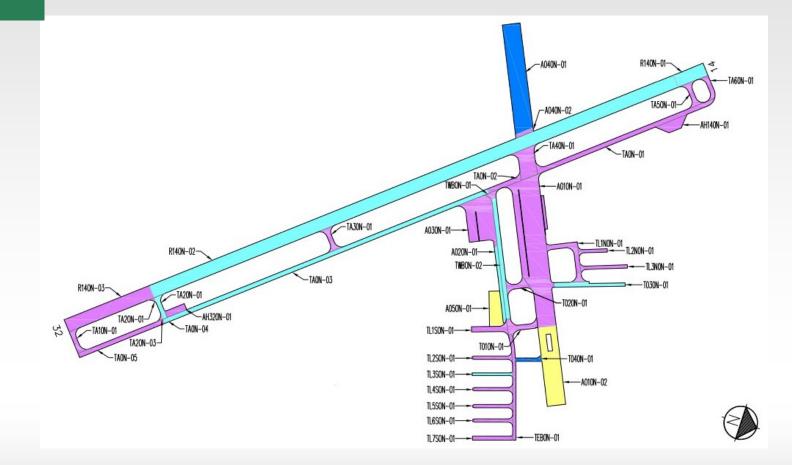
- Covered/Indoor Parking for GA and Corporate jets that park overnight
- Terminal building with 24-hour access area for hanging out and relaxing
- Restaurant on the property to give a reason to choose to fly into Ontario
- More existing hangars that are move-in ready
- Grass strip tiedown area with a shelter/fire pit area for fly-in campers (Bozeman is an example)
- Deicing
- Development of the west side (golf course)



INVENTORY

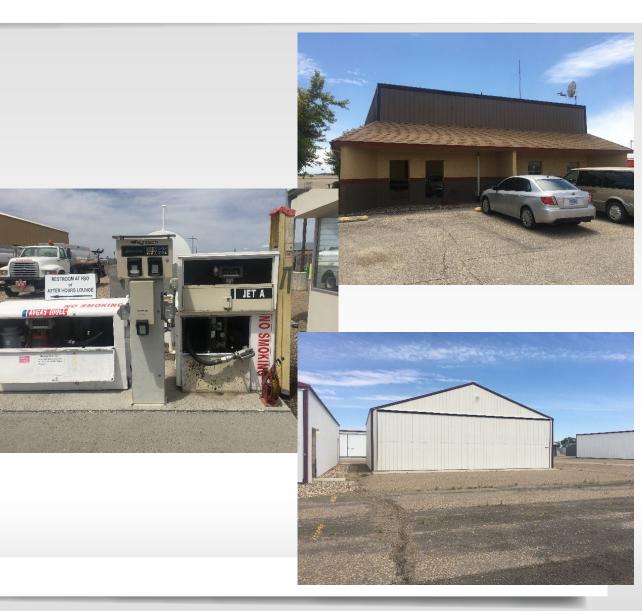
- Role in System
 - Local general aviation airport in the National Plan of Integrated Airport Systems (NPIAS)
 - \$5,216,288 in federal funds from 2003 to 2021
 - \$4,789,461 in state funds from 2007 to 2021
- Activity
 - 89 based aircraft
 - 18,062 aircraft operations (2021)
- Airside
 - Beacon and Local Weather available
 - 5,006' x 100' Runway 15/33
 - 2 Apron areas, 34 tie-downs
- Airspace and Approaches
 - VFR and IFR Capabilities
 - Runway 15: 1-mile visibility minimum
 - Runway 33: 7/8-mile visibility minimum

INVENTORY


DESIGN STANDARDS

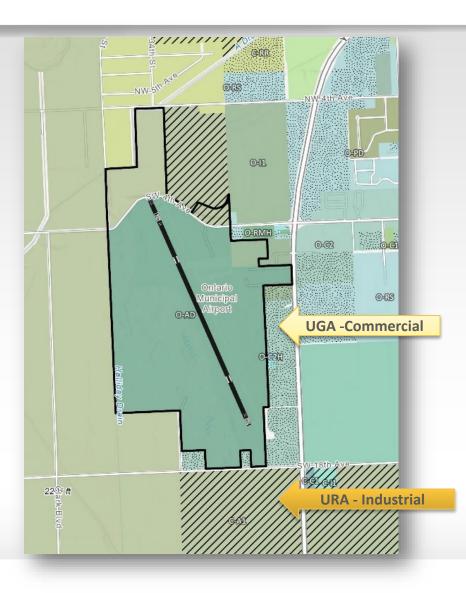
Standard/Specification	Standard	Existing
Runway Design Code (Runway 15/33)	B-II, NP, Large	B-II, NP, Large
Critical Aircraft	Beechcraft King Air 200	Beechcraft King Air 200
Runway Length/Width	4,000 x 75 Feet	5,006 x 100 Feet
Runway Safety Area Width/Beyond End	150'/300'	150'/300'
Runway Object Free Area Width/Beyond End	500'/300'	500'/300'
Runway Obstacle Free Zone Width/Beyond End	400'/200'	400'/200'
Runway Protection Zones	500'x700'x1,000' (15 End)	500'x700'x1,000' (15 End)
	1,000'x1,510'x1,700' (33 End)	1,000'x1,510'x1,700' (33 End)
Runway to Aircraft Holdline	200'	200'
Runway to Parallel Taxiway	240'	245'
Runway to Aircraft Parking	250'	>250
Taxiway Design Group	2	2
Taxiway Width	35'	35'
Taxiway Safety Area Width	79'	79'
Taxiway/Taxilane Object Free Area Width	131'/115'	131'/115'

PAVEMENT CONDITION


2017 Pavement Inventory

- Runway and taxiway pavement in good condition
- Pavement near the eastern hangered areas classified as poor, in need of reconstruction

ADDITIONAL INVENTORY


- Fueling system
 - Airport owned Fuel farm 3 above ground tanks
 - 2 fuel trucks
 - 4,000 USG for Jet A
 - 2,000 USG 100LL
- FBO
 - Silverhawk Aviation Academy
 - 5,026 square foot maintenance hangar
- Hangars
 - 48 Hangars (Including permit requests)
- Terminal Building / Pilot's Lounge
 - 3,115 square feet
- Other businesses
 - EMS Life Flight 9,369 square foot hangar
 - BLM Seat Base 2,383 square foot office building

ENVIRONMENTAL FINDINGS

Analysis	Status	Impact
Air Quality	Complete	
Climate	Complete	
Biological Resources	Complete	
Water Resources, Wetlands, Surface Waters, Groundwater, Scenic Rivers	Complete	
Coastal Resources	Complete	
Natural Resources and Energy Supply	Complete	
Historical, Architectural, Archeological and Cultural Resources	Pending Cultural Resource Survey	
Farmlands	Complete	Airport expansion to surrounding areas would impact farmland and require coordination with USDA/NRCS.
Land Use	Complete	
Noise and Compatible Land Use	Complete	
Visual Effects	Complete	
Socioeconomics, Environmental Justice, Children's Environmental Health, Safety Risks	Complete	
Hazmat, Solid Waste & Pollution Prevention	Complete	Any projects impacting Ralston Aviation and the BLM would require coordination with IDEQ.

ZONING AND LAND USE

Future chapters will research zoning and land use to verify that areas are zoned appropriately.

DESIGN CRITERIA

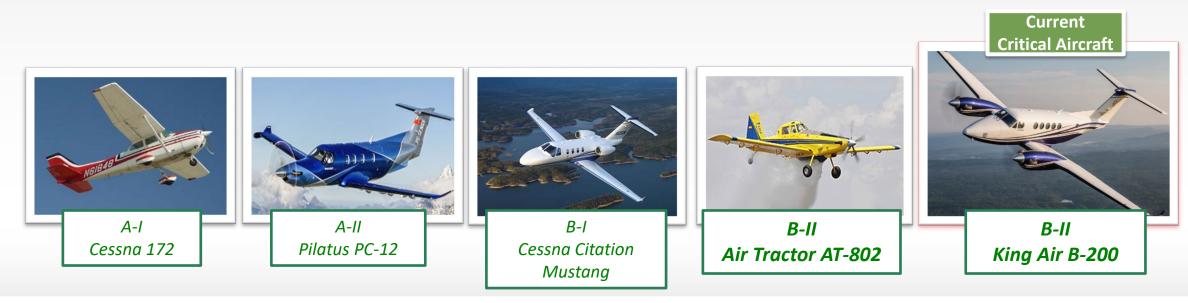
Aircraft Approach Category (AAC)				
Category	Approach Speed			
А	Less than 91 knots			
В	91 to 121 knots	91 to 121 knots		
С	121 to 141 knots	121 to 141 knots		
D	141 to 166 knots			
E	More than 166 kno	ots		
Airplane Design Group (ADG)				
Group Number	Tail Height (ft)	Wingspan (ft)		
1	Less than 20	Less than 49		
Ш	20 to 30	49 to 79		
Ш	30 to 45	79 to 118		
IV	45 to 60	118 to 171		
V	60 to 66	171 to 214		
VI	66 to 80	214 to 262		

The critical aircraft ultimately determines the dimensional requirements of an airport. Ontario Municipal Airport has a B-II Airport Reference Code (ARC).

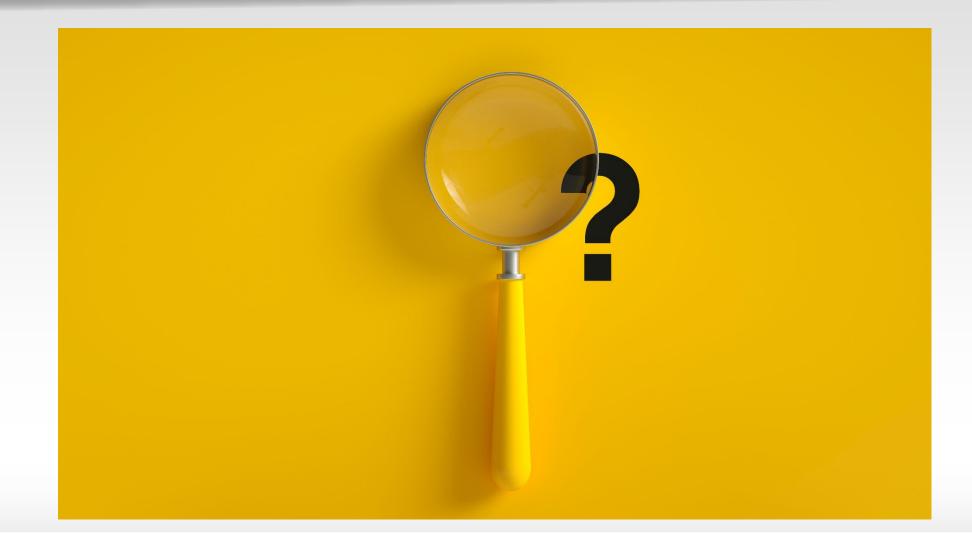
Beechcraft King Air 200 Characteristics					
Characteristic	Aircraft Performance	FAA Design Code			
Approach Speed	90 Knots	AAC	В		
Wingspan	54.5 Feet				
Tail Height	14.8 Feet	ADG	II		
Max Takeoff Weight (MTOW)	12,500 Pounds	AAC/ADG	B-II		
Main Gear Width (MGW)	17.7 Feet	TDG			
Cockpit to Main Gear (CMG)	15 Feet	DU DU	2		

FUTURE/DESIGN CRITICAL AIRCRAFT

Airport Design


- Airfield Design Based Upon Aircraft
- Based upon Wingspan and Approach Speed
- Also based upon Wheel Track and Wheelbase
- 500 Take-offs or Landings by 'Biggest and Fastest' Aircraft, Determine Which set of Design Standards
- Critical Aircraft

Primary Considerations:


- Operations game camera, fuel sales, TAF, TFMSC, other
- Based Aircraft basedaircraft.com

Airplane Approach Category (AAC)				
Category Approach Speed (kts)				
А	Less than 91			
В	91 or greater, but less than 121			
Ċ	121 or greater, but less than 141			
D	141 or greater, but less than 166			
E	166 or greater			

Airplane Design Groups (ADG)					
Group Tail Height (ft) Wingspan (ft)					
	<20	<49			
=	20-<30	49-<79			
111	30-<45	79-<118			
IV	45-<60	118-<171			
V	60-<66	171-<214			
VI	66-<80	214-<262			

DISCUSSION & QUESTIONS

FORECASTS OF AVIATION DEMAND

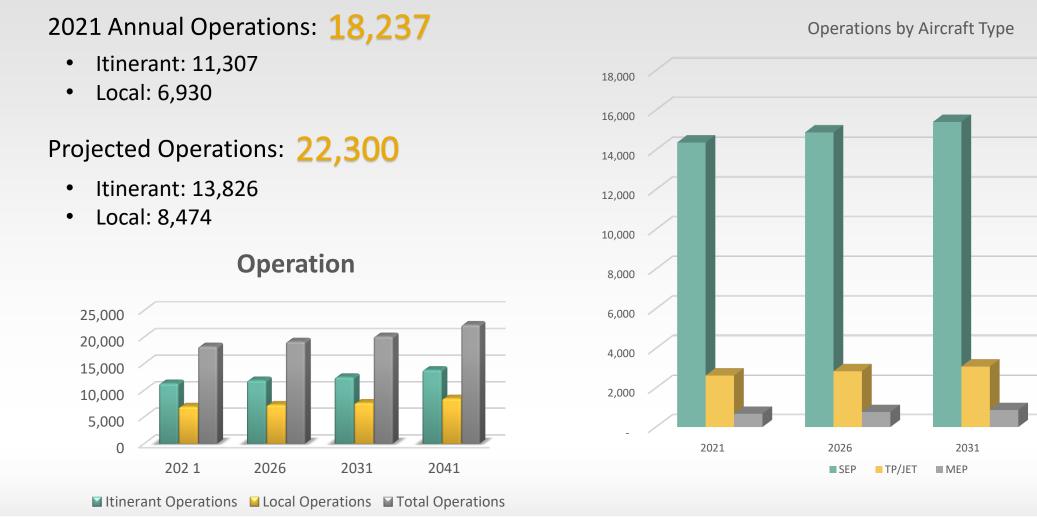
Chapter Three Forecasts of Aviation Demand

- Economic Influences and Socioeconomics
- Based Aircraft Projections and Forecast
- Aircraft Operations and Forecast

FACTORS FOR FORECASTING

Influencing Factors on Forecasting

- FAA and State of Oregon
- Service Area (Ontario, OR-ID Micropolitan Statistical Area) Growth Trends
 - Socioeconomic
 - Increased Business Interests
- Based Aircraft and Annual Operations
- Game Camera records


Based Aircraft and Operations Projections and Forecasting

- FAA Single-Engine Piston, Multi-Engine Piston, Jet, Turboprop, and Helicopter Trends
- FAA Fuel Sales, Pilot Hours Flown, and Fleet Mix
- Type of Aircraft Forecasts calculated using data from FAA Terminal Area Forecast (TAF) and FAA Traffic Flow Management System Counts (TFMSC)

BASED AIRCRAFT FORECAST

OPERATIONS FORECAST

SUMMARY OF FORECAST

	Consultant	FAA
Existing Based Aircraft Count	89	59
Projected 20-Year Based Aircraft Count	105	59
2021 Annual Operations	18,062	13,138
Projected 20-Year Operations Count	22,300	15,316

	2021	2026	2031		
Projected B-II Operations	2,245	2,540	2,873		
Short-term Airport Design Codes	ADG B-II / TDG-2: Beechcraft King Air 200, Air				
Short-term Airport Design Codes	Tractor AT-802				
Illtimate Airport Design Codes	ADG B-II / TDG-2: Beechcraft King Air 200, Air				
Ultimate Airport Design Codes	Tractor AT-802				

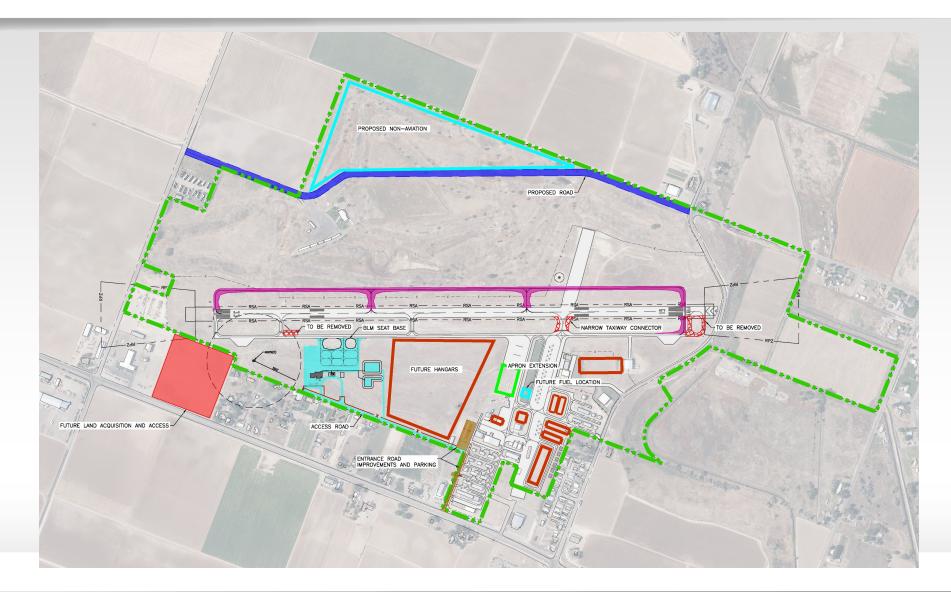
Air Tractor

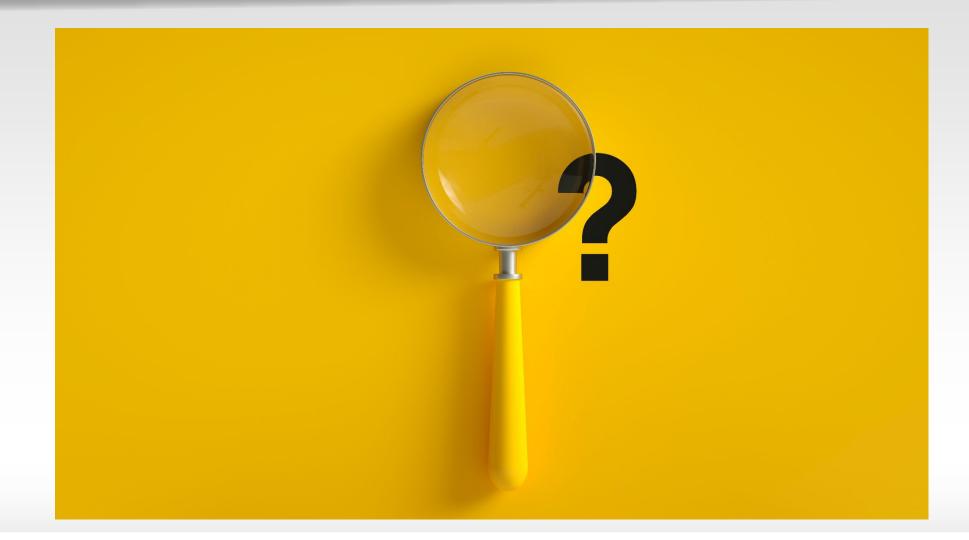
AT-802

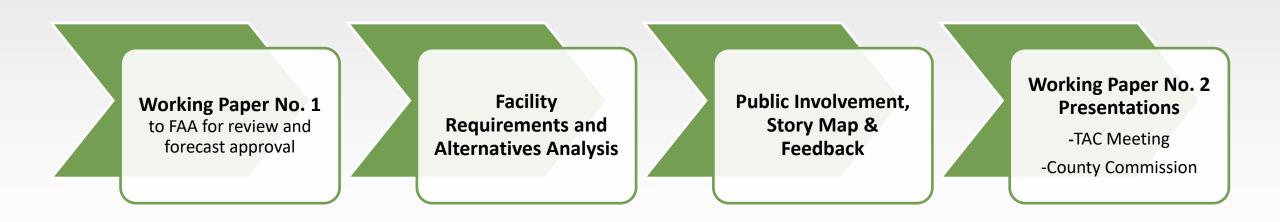
Beechcraft King Air 200


Critical Aircraft

The most demanding aircraft or group of aircraft (in terms of size and/or speed) that contributes to over **500** operations annually


WHAT NEEDS TO CHANGE OR EXPAND?


DESIGN FOR DEVELOPMENT AND ENHANCEMENT


DEVELOPMENT CONCEPTS

DISCUSSION & QUESTIONS

NEXT STEPS

Justin Zysk

Justin.zysk@ontariooregon.org

541-709-7651

Neal Fraser

nfraser@jub.com

801-226-0393

Toby Epler

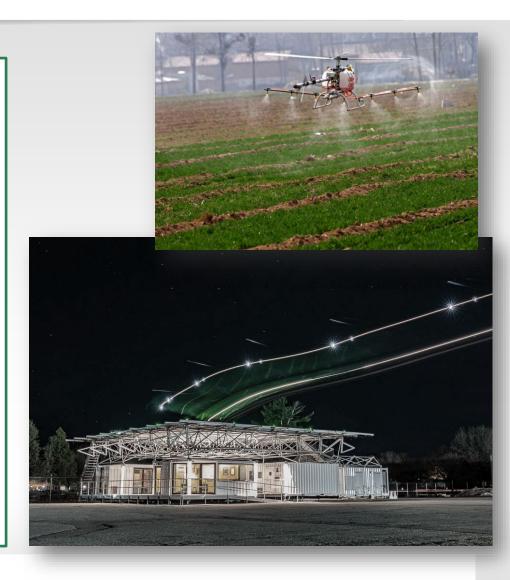
tepler@jub.com

208-376-7330

THANK YOU FOR BEING HERE TODAY!

J·U·B ENGINEERS, INC.

OTHER J-U-B COMPANIES


ADDITIONAL FACTORS TO CONSIDER

Advance Air Mobility

- A vertiport maybe recommended at this location
- UAV operations maybe recommended
 - Benefit the community with aerial agricultural applications
 - Unmanned firefighting applications to supplement BLM effort
 - What would you need to be successful?

Definitions

- Vertiport: Areas designed specifically for Advanced Air Mobility aircraft to take off and land
- UAV: Unmanned Aerial Vehicle

